德国银杉蓄电池生产厂家

更新时间:2022-11-26 15:06:50 信息编号:4650707 发布者IP:221.216.238.239 浏览:73次
供应商
北京金业顺达科技发展有限公司 商铺
认证
资质核验:
已通过营业执照认证
入驻顺企:
9
主体名称:
北京金业顺达科技发展有限公司
报价
人民币¥1.00元每只
品牌
银杉
型号
12V
关键词
德国银杉蓄电池
所在地
北京市昌平区回龙观镇龙博苑三区一号楼一层一零六
联系电话
010-57478027
手机号
18162041125
经理
丁靑辰  请说明来自顺企网,优惠更多
让卖家联系我

产品详细介绍

 德国银杉蓄电池生产厂家

德国银杉蓄电池优越性                               销售热线:13366237377

1、维护简单 充电时电池内部产生的气体基本被吸收还原成电解液、基本没有电解液减少

2、持液性高 电解液吸收地特殊的隔板中,保持不流动状态,所以即使倒下也可使用。(倒下超过90度以上不能使用)

3、安全性能优越 由于极端过充电操作失误引起过多的气体时可以放出,防止电池的破裂。

4、自放电极小 用特殊铅钙合金生产栅,把自放电控制在Zui小。

5、寿命长、经济性好 电池的板栅采用耐腐蚀好的特种铅钙合金,同时采用特殊隔板能保住电解液,再同时用强力压紧正板活性物质,防止脱落,所以是一种寿命长、经济的电池。

6、内阻小 由于内阻小,大电流放电特性好。

7、深放电后有优的恢复能力 万一出现长期放电,只要充分充电,基本不出现容量降低,很快可以恢复。

 

电动汽车超级充电站与超级电池

电池续航力的提升决定着电动汽车的命运,科研人员在追求化学与材料的新发现,车企与电池供应商在合力降低成本增加能量。在不断涌现的新技术中,替代锂离子化学成分的各种研究大量投入,有一些成为了热门应用和解决方案。

 

手机电池貌似提高很快,动力电池呢?

 

消费级市场(笔记本、手机、MP3等)作为锂离子电池(下称锂电池)Zui早的“东家”,为锂电池的推广做出了巨大的贡献。今天,智能手机大行其道,电池再一次成为了制约智能手机发展的关键因素之一。这与如今的新能源汽车市场有几分相似。

 

对于电池能量密度的描述,一般有质量比能量和体积比能量两种说法。所谓质量比能量,就是每kg电池所携带的能量的多少,比如动力电池市场,多是以质量比能量去描述的。所谓体积比能量,一般指电池单位体积下所承载的能量的数量。目前主流手机电池的容量在2000~3000mAH,这样的容量的电池,其质量往往只有几十克,所以在移动消费级市场中,更关心的是电池的比体积能量。

 

反观近十年手机电池的发展,大概可以分为三个阶段。

 

第一个阶段,锂离子聚合物电池的兴起。

 

传统的锂离子电池使用的是普通液态锂电解质,但是在2005年以后,聚合物电解质的锂离子电池开始崭露头角。相对于之前的液态锂离子电池来说,聚合物锂离子电池除了在电化学特性上更有优势外,更重要的,是塑型更加灵活,能让电池做的更薄,体积利用率更高。

 

第二个阶段,手机电池的稳定期。

 

2010年以前,尤其是2007年以前,锂离子聚合物电池的兴起让手机电池容量有了长足的提高。但是随着技术的成熟,电池比能量提高的速度开始减缓。更重要的是,随着电池能量的加大,安全问题开始浮现在我们眼前。很多厂家开始着眼于提高电池的安全性指标,在电池的外壳防护上下了一些功夫。虽然不能提升电池的能量密度,但是在长期发展来看,还是必要的。因为能量密度增加,出现问题的损失也会越大。

 

第三个阶段,手机电池的第二次能量密度提升。

 

到2013年以后,手机电池开始有一次的提升了能量密度。这里面有材料的原因,电池厂家通过改善工艺,提高了材料的压实密度,或通过其他的手段,让电池的容量有了进步。同时,即iPHONE之后,市场上越来越多的手机电池变得不可拆卸。通过电池和手机的“一体化”,省去了原来电池的硬壳保护,提升了电池的能量密度,或者根据电池结构,开发异型电池等。除此以外,更直接的一种方法,是提高电池的电压。普遍的,通过将电压平台提高0.1V左右,提高电池的能量。这与前一段比亚迪的磷酸铁锰锂电池有异曲同工之妙。

 

目前,主流的手机电池能量密度保持在600Wh/L左右,有些厂家的产品会稍微高一些,比如小米手机,电池能量密度在620Wh/L以上,一款金立手机能量密度达到650Wh/L。使用的哪种手段,还请对号入座。曾有报道说,当能量密度达到700Wh/L的时候,可能使电池的可充分循环寿命小于300次,爆炸的隐患大大增加。

 

既然提高电压有如此多的害处,为什么大家还要这么去做呢?这让我想起了一个故事。以前圆珠笔和钢笔的笔芯粗细度是一样的,但是有一个问题,就是圆珠笔书写2万字左右,就会出现漏油,主要原因就是笔珠的磨损寿命就在2万字左右,当所有人都在研究耐磨材料的时候,有个叫田腾山郎的日本人,开发了一款产品,就是让笔芯的油墨在2万字之前用完。这与现在的手机电池的研发思路有相似之处。

 

智能手机,已不再是当年“用到坏”传统手机,而是像电脑一样,用一段之后,就需要更新升级。因此可能还没到电池出现问题的时候,手机已经淘汰了。虽然我个人认为,提高电池电压平台,实际上是一个比较冒险的方式,对电池的稳定性和寿命,都有着潜在的影响。但是目前看,适当的提高一点电池的工作电压,起码市场对这种做法还是接受的。

 

新的电池技术虽然是鼓舞人心的,但是任何的新技术,新材料都需要经过相当长的一个转化过程,才能成为商业的产品,比如锂电池,Zui早的锂电池的概念要追溯到上个世纪的六七十年代,之后液态锂离子电池和聚合物锂离子电池也是经历了十几年发展,才有了今天的状态。但是Zui近几年智能手机硬件发生了突飞猛进的进步,小小的手机性能,可以与一台个人电脑相媲美,这样电池技术有点吃不消了。所以虽然手机续航不一定是国民痛点,但起码也是短板之一。

 

很多人关心动力电池和消费级电池的区别。我觉得,从电池的角度来说,是没有本质的区别的。但是由于产品应用条件不同,所以设计的理念和思路也是不同的,从而导致我们所看到不同领域电池的产品属性,有很大区别。在消费级电池领域,没有五花八门的正极材料;而在动力电池领域,也很少谈到关于电解质变化对性能的影响。在能量密度方面,比如我们都知道2015年2月16日,科技部发布了《国家重点研发计划新能源汽车重点专项实施方案(征求意见稿)》,其中明确要求了2015年底轿车动力电池能量密度要达到200Wh/kg。

 

作为消费级电池来讲,早在2013年,其能量密度就超过200Wh/kg的水平了,这不但与优化材料和结构有关,高电压的做法更是功不可没。由于消费级电池一般不成组使用,即使成组,也是几支电池之间的串并联,与动力电池简直是数量级的差别;“BMS”直接管理电芯;充放电电流较小;热管理也相对容易;一般来说,消费级电池质保期也只有1年,所以这种做法是完全可以满足消费级电池市场的需求的。但是在动力电池市场,可能就行不通了。动力电池的要求,相对要高更加综合,既有安全性的考虑,又有成本方面的评价,同时还有性能方面的要求。虽然在特斯拉身上,似乎完成了一次消费级电池与新能源汽车的完美结合,但是车的定位和价格,和我们期望中家用级的新能源汽车还是有一定差距的。

 

磷酸铁锂、钴酸锂、三元材料、锰酸锂……各种正极材料冲击能量瓶颈的同时,我想是不是应该停下来考虑一下安全和其它的问题。消费市场,动力市场,储能市场,锂离子电池是不是能解决所有的问题。任何的电池可能都有他的适用环境。比如燃料电池,无论是作为新能源汽车的动力单元,还是作为市政供电设备来说,其电池特性上都是非常合适的,但是与现有锂离子电池体系相比,开发小型燃料电池便携设备可能使比较困难的。在高喊的技术突破的时候,更冷静的考虑一下锂离子电池的局限性。因为只有意识到这些局限性,才有可能探索新的电池体系。当然不得不承认,随着技术的推进,将来发展具有更高能量密度,并且能满足商业应用需求的新的电池体系,而且要求新体系所使用的材料要求环境友好,成本低廉,材料易获得,变得越来越困难了。因此,在发展锂离子电池的同时,我呼吁要对那些已经发现但并未充分商业化的电池体系,投入更多的精力和资源。

 

无法商业化,为何电池技术就是没有突破?

 

如果你想要一款加速度体验良好的车,特斯拉ModelS能满足你。当然,像这样的电动车不仅能够带来良好的驾驶体验,相比较于传统汽油车,它也不会对环境造成污染。但是,从电动车诞生至今,它都只是占了很小一部分市场份额。主要的原因是电动车的电池昂贵而且需要经常充电。可是,为什么电池性能一直以来都不见起色?

 

在过去的数年中,有无数的电池技术研究取得突破性的进展,但是这些当中,鲜少能够被商业所使用,兑现低成本和多容量的承诺。比如成立于2001年的锂离子电池初创公司A123Systems,曾宣称,能将锂离子电池的磷酸锂铁正极材料制造成均匀的纳米级超小颗粒,因颗粒和总表面面积剧增而大幅提电池的放电功率,而且,整体稳定度和循环寿命皆未受影响。但Zui终于2012年以失败告终。原因是,不能够量产它所描述的那些锂电池,也不能安全有效地转换电量。

 

2012年,位于美国加州的电池公司EnviaSystems在华盛顿重大的会议上宣称,研发出能量密集型电池,单位重量的锂电池储存能量是目前电池的两倍,而且成本降低一半。通用汽车一听说能研发如此高能电池的Envia,马上向其投资了700万美元,希望在电动车业务上进行合作。到了2013年,Envia都没有兑现它所宣称的“惊人效果”,导致失去资助资金以及通用汽车公司的合作伙伴关系。另外,这家公司也受到美国能源研究计划署ARPA-E的重视。只能说,Envia令人印象深刻的电池让人兴奋也让人落空。

 

事实上,在电池行业中,由于电池技术的高门槛,初创公司难以单独存活。因此,电池行业一般都是由大公司主导。A123Systems前高管AndyChu说:能量存储是一个“大头”玩的游戏,因为在研发电池中稍有不慎将会铸成错误。虽然我希望电池初创公司Zui终会取得成功,但通过这几年的历史,(大家都可以看见,这些公司的)下场都不太好。

 

在过去的十年里,我们见证了电池行业“突破性”的进展,但是这些都是来自大公司的一些稳定小进步。

 

电池成本降速比预期快,3年内将降到230美元/千瓦时

 

现在,电动汽车的价格比普通燃油车贵很多,很多人认为电动汽车进入大众汽车消费市场将永无出头之日,虽然燃料和维保费用能省不少,但是较高的初次购买价格仍然会吓跑不少消费者。地球人都知道,电动汽车就是贵在电池,但可喜可贺的是,国外一项Zui新研究称,锂离子电池的成本价格一路在下降,而且速度比以前的预估要快。

 

据TheCarbonBrief报道,早在2013年,国际能源属(IEA)曾经预测,到2020年,电动汽车电池成本将下降到300美元/千瓦时。然而,NatureClimateChange的研究人员认为,电动汽车行业可能已经提前达到了这一目标,2007年至2014年之间,全行业平均成本从1000美元/千瓦时下降到410美元/千瓦时,平均每年下降14%。某些领先企业,例如日产和特斯拉已经跨越了IEA预测的300美元/千瓦时屏障,去年起电池成本很可能已经更便宜,价格可能比Zui近许多同行的评估低2至4倍,每年降幅为8%。

 

这项研究结果是基于同业评审学术刊物、机构测算、咨询和行业报告、媒体报道、电池厂商和汽车制造商等85个成本预测得出的。由于制造商不愿向公众披露自己的真实成本,因此,前面所提到的数据不是完整的数据。

 

电池成本估算和预期

 

100美元/千瓦时经常被看作是电动汽车能与普通燃油车进行价格竞争的基准。为了追求削减成本,导致替代锂离子化学成分的各种研究大量投入。

 

研究人员预计,2017-18年,电池成本将会降到230美元/千瓦时。以美国为例,目前油价很低,预计电池成本只有低于250美元/千瓦时,电动汽车的价格才能更有竞争力。如果电池成本再进一步跌破150美元/千瓦时,那么电动汽车市场就会发生量变,车辆技术也将因此发生潜在转变。

 

要想达到上述水平,即使是在当前的势头下,即使电池单体化学技术已经实现了许多进步,但电池成本价格的大幅下降也不可能在一夜之间发生。研究人员认为,这些新的研究仍然很遥远,只有市场规模的扩大更可能带来成本的下降。

 

特斯拉汽车公司正在验证研究人员的论断,当位于内华达州的Gigafactory超级电池工厂在2017年启动后,就会产生足够大的市场规模,从而实现Model3电动轿车35000美元的平民低价,这意味着电池成本将降低30%。另一方面,雷诺-日产也计划在2016年实现可供150万辆电动汽车使用的电池产能。

 

研究人员称,整体而言,在不久的将来,即使技术没有出现大的突破,规模经济效应也有可能推动电池成本下降到200美元/千瓦时。如果这项研究的预测是正确的,那么电动汽车市场的发展规模可能会超过预期,这是一件好事。

 

从长远来看,汽车制造商必须在盈利的基础上生产电动汽车,然后加大销售力度,实现规模经济效应。日产汽车公司在在第一代聆风电动汽车上市后就设立了庞大的销售目标,如今确实说到做到,聆风是全球迄今销量Zui高的电动汽车,今年将突破20万辆大关。下一代聆风预计将提供120-150英里(193-240公里),甚至更多的续航里程(参配、、询价),显然这会吸引更多的消费者,日产作为车企也会越来越有利可图。

 德国银杉蓄电池生产厂家

蓄电池的参数设置及维护管理

参数设置管理:

浮充电压:2.23-2.25V/单体(25℃)

24V系统:26.76-27.0V 48V系统:53.52—54.0V

浮充电压温度补偿系数:-3.0mV/℃ (基准温度为25℃)

均充电压:2.35V/单体(25℃)

24V系统:28.2V 48V系统:56.4V

均充电压温度补偿系数:-5.0mV/℃ (基准温度为25℃)

均充频率:6个月/次(180天)---特殊情况例外

均充时间:12小时 均充限流值:0.1-0.25C10。

高压告警:24V系统:28.5V 48V系统:57V

低压告警:24V系统:23.4V 48V系统:47V

脱离电压:24V系统:22.2V 48V系统: 不设置(根据情况定)

 

均浮充转换判据:

转均充判据:1、转均充容量比:95%; 2、放电时间超过30分钟; 3、放电电压低于49V

转浮充判据:1、后期稳流均充时间:180分钟;稳流均充电流:≤006C10/组日常维护管

每月检查一次项目:单体的浮充电压、电池组总压及负载电流;电池外观;电池极柱、安

全阀处有无渗漏或酸雾;电池的环境温度及环境状况。

---所需的设备:数字万用表、钳型电流表、温度计。

备注:若条件允许,可使用内阻仪测量电池的内阻---所需设备: 内阻仪每半年检查一

次项目:

连接螺钉的拧紧。对电池组进行12小时均充。

-—-所需的设备:扳手(或套铜扳手)

每年检查一次项目:

对电池组放出30-40%C10核对性放电试验。

测量馈电母线、电缆及连接头压降

———所需的设备:数字万用表、钳型电流表、温度计、假负载、电缆等。

每三年检查一次项目:

对电池组放出80%C10容量放电试验。

以便准确确定达到放电终止电压的时间。

e) 放电电流乘以放电时间即为蓄电池组的容量。蓄电池按10小时率放电时,如果温度

不是25℃时,则应将实际测量的容量按照下式换算成25℃时的容量Ce:

Ce=Cr/{1+K(t-25℃)}------------------------(A)

式中:t—放电时的环境温度 

K—温度系数(10H率放电时 K=0.006/℃;3H率放电时 K=0.008/℃;1H率放电时 K=0.01/℃

f) 放电结束后,要对蓄电池组进行充电,充入电量为放出电量的1.2倍以上。

2 在线式测量法

a) 在直流供电系统中,调整整流器输出电压至保护电压(如46V),由蓄电池对实际

负荷供电,在放电中找出蓄电池组中电压Zui低、容量Zui差的一只蓄电池作为容量试验对象。

b) 打开整流器对蓄电池组进行充电,等蓄电池组充满电后稳定1小时以上。

c) 对a)中放电时找出Zui差的那只蓄电池进行10小时率放电试验。放电前后要测量记

录该蓄电池的端电压、温度、放电时间和室温。以后每隔1小时测量记录一次,放电快到终

止电压时,应随时测量记录,以便准确记录放电时间。

d) 放电电流乘以放电时间即为蓄电池组的容量。如果室温不是25℃时,则应按照(A

)式换算成25℃时的容量。

e) 放电试验结束后,用充电机对该只蓄电池进行补充电,恢复其容量。

f) 根据测量记录数据绘制放电曲线。

 

2 核对性放电试验法

为了能随时掌握蓄电池组的大致容量,进行核对性放电试验是必要的,其方法是:

a) 在直流供电系统中,调整整流器输出电压至某保护电压(如46V),由蓄电池对实际

通信负荷供电。蓄电池组放电前后要测量记录每只电池的端电压、温度、室温和放电时间。

放出额定容量的30-40%为止。

b) 放电结束后,要对蓄电池进行充电,充入电量为放出电量的1.2倍以上。

c) 根据测量记录的数据绘制放电曲线,留作以后再次测量时比较。

 

 

铅蓄电池的短路系指铅蓄电池内部正负极群相连。铅蓄电池短路现象主要表现在以下几个方面: 

(1) 开路电压低,闭路电压 ( 放电 ) 很快达到终止电压。 

(2) 大电流放电时,端电压迅速下降到零。 

(3) 开路时,电解液密度很低,在低温环境中电解液会出现结冰现象。 

(4) 充电时,电压上升很慢,始终保持低值 ( 有时降为零 ) 。 

(5) 充电时,电解液温度上升很高很快。 

(6) 充电时,电解液密度上升很慢或几乎无变化。 

(7) 充电时不冒气泡或冒气出现很晚。 

造成铅蓄电铅酸蓄电池池内部短路的原因主要有以下几个方面: 

(1) 隔板质量不好或缺损,使极板活性物质穿过,致使正、负极板虚接触或直接接触。 

(2) 隔板窜位致使正负极板相连。 

(3) 极板上活性物质膨胀脱落,因脱落的活性物质沉积过多,致使正、负极板下部边缘或侧面边缘与沉积物相互接触而造成正负极板相连。 

(4) 导电物体落入电池内造成正、负极板相连。 

(5) 焊接极群时形成的 “ 铅流 ” 未除尽,或装配时有 “ 铅豆 ” 在正负极板间存在,在充放电过程中损坏隔板造成正负极板相连。 

 

正负极板 

 铅酸蓄电池的极板,依构造和活性物质化成方法,可分为四类:涂膏式极板,管式极板,化成式极板,半化成式极板。涂膏式极板由板栅和活性物质构成的。板栅的作用为支撑活性物质和传导电流、使电流均匀分布。板栅的材料一般铅锑合金,免维护电池采用铅钙合金。正极活性物质主要成分为二氧化铅,负极活性物质主要成份为绒状铅。 

 

 

隔板 

 电池用隔板是由微孔橡胶、玻璃纤维等材料制成的,它的主要作用是: 

 防止正负极板短路;使电解液中正负离子顺利通过。阻缓正负极板活性物质的脱落,防止正负极板因震动而损伤。 

 

 

电解液 

 电解液是蓄电池的重要组成部份,它的作用是传导电流和参加电化学反应 

 电解液是由浓硫酸和净化水(去离子水)配制而成的,电解液的纯度和密度对电池容量和寿命有重要影响。 

 

电池壳、盖 

 电池壳、盖是装正负极板和电解液的容器,一般由塑料和橡胶材料制成。 

 

 

排气栓 

 排气栓一般由塑料材料制成,对电池起密封作用,阻止空气进入,防止极板氧化。同时可以将充电时电池内产生的气体排出电池,避免电池产生危险。 

 使用前:必须将排气栓上的盲孔用铁丝刺穿、以保证气体溢出通畅。 

 

 

 

相关产品:德国银杉蓄电池
所属分类:中国电工电气网 / 蓄电池
本页链接:http://product.11467.com/info/4650707.htm
德国银杉蓄电池生产厂家的文档下载: PDF DOC TXT
关于北京金业顺达科技发展有限公司商铺首页 | 更多产品 | 联系方式 | 黄页介绍
主要经营:
北京金业顺达科技有限公司坐落于北京昌平区,公司主要经营:各大品牌ups电源,进口国产免维护铅酸蓄电池,胶体蓄电池等公司拥有专业的销售和服务队伍。60%的员工拥有三年以上的电源系统专业从业经验。“以人为 ...
我们的其他产品
顺企网 | 公司 | 黄页 | 产品 | 采购 | 资讯 | 免费注册 轻松建站
免责声明:本站信息由企业自行发布,本站完全免费,交易请核实资质,谨防诈骗,如有侵权请联系我们   法律声明  联系顺企网
© 11467.com 顺企网 版权所有
ICP备案: 粤B2-20160116 / 粤ICP备12079258号 / 粤公网安备 44030702000007号 / 互联网药品信息许可证:(粤)—经营性—2023—0112