正溴丙烷(清洗配方,原液)

产品名称	正溴丙烷(清洗配方,原液)
公司名称	上海塞恩特贸易有限公司
价格	33.00/KG
规格参数	品牌:ABZOL 型号:ES
公司地址	上海市浦电路489号燕乔大厦1618室
联系电话	18121212208

产品详情

溴代正丙烷npb工业清洗剂

1. 前言: 对于顽固油份的清洗到目前为目止仍以氯代溶剂最为经济有效,但基于环境保护与人体安全,大多数的氯代溶剂均已被限制或禁止。美国环保组织已在数年前立法通过使用溴代正丙烷替代氟氯烃,用作清洗剂。 本产品npb以烷基溴代物为原料的新型溶剂,在经剂与性能方面都接近氯代溶剂,而溴代正丙烷的物性与高洗净力类似三氯乙烷,且具有低臭氧破坏系数(ozone depletion potential=odp)、低暖化系数(global warming potential=gwp),

而且没有闪火点,是目前氯代剂最佳的替代品之一。 2、溴代正丙烷 (npb) 的物性

目前有错误报道说,溴代正丙烷具有闪火点,经过反复试验,不论cleveland 开放式或tag密闭式,结果确认没有闪火点。如部份氯化剂一样,美国运输部(dot)规定溴代正丙烷为"非易燃性液体"。此外,其燃烧界限范围极为狭窄,在空气中,重量比4至7.8%时有可能燃烧。 表 1 溴代正丙烷(npb)与其它溶剂的比较

	npb	111三氯乙烷	三氯乙烯	hcfc - 141b	hcfc - 225
沸点()	71	74	87	32	54
比重,25	1.35	1.32	1.46	1.24	1.55
粘度,cps,25	0.49	0.79	0.54	0.43	0.59
蒸汽压 , 20	110.8	100	57.8	593	285

比热,25	0.27	0.25	0.22	0.26	0.25
潜热,(cal/g)	58.8	57.5	57.2	52.3	33
溶解度,(g/100gh2o)	0.24	0.07	0.11	0.18	0.033
水溶解性(g/100g溶剂)	0.05	0.05	0.03	0.042	0.03
表面张力,(dyne/cm, 20)	25.9	25.6	26.4	19.3	16.2
闪火点 , tcc()	无	无	无	无	无
燃烧界限(重量%)	4-7.8	7-13	8-10.5	7.6-17.7	无

3、洗净力

表示溶剂洗净力的指标有hildebrandt变数 kauri-butanol 值与hansen值。下表中列出各溶剂的数值,一般氯代溶剂与表中数值相近。

表2溶解度参数(虽然溶解度参数表示洗净力,但不代表实际的洗净力)

	npb	111三氯乙烷	三氯乙烯	二氯甲烷	四氯乙烯
hildebrandt 变数	18.2	17.4	18.8	19.8	19.0
kauri-butanol值	125	124	129	136	90
hansen参数:非极性	16.0	17	18.0	18.2	19.0
:极性	6.5	4.3	3.1	6.3	6.5
:氢键	4.7	2.1	5.3	6.1	2.9

比较一般温度下的洗净力,应依据以下的要点实施:1.溶剂中混入30% ±的溶液

- 2.测定钢丝绒的重量,浸入上述溶液,取出后于100 干燥30分钟
- 3.再测定钢丝绒的重量,记录残留土的重量4.将钢丝绒置入玻璃管中,以3ml测试溶剂洗涤.
- 5. 取出钢丝绒,用同样方式干燥表3以相当于至少1ml土的重量表示洗净力

	矿物油	聚酯	润滑油酯	矽油
npb	0.88	1.44	0.97	1.00
1,1,1-三氯乙烷	1.00	1.00	1.00	1.00
三氯乙烯	0.82	1.25	0.59	0.95
四氯乙烯	0.67	1.21	0.82	0.83
二氯甲烷	1.01	0.80	0.87	0.88

4.**蒸发速率** 从原料成本的观点而言,最经济的替代溶剂是水性系统,但是它存在两个问题,一是不挥发性界面活性剂的残留,另一是干燥性差,因而造成某些清洗状况的限制,而以npb与四种氯化溶剂蒸发速率的相对比较

表4蒸发速率的相对比较

n-pb	1,1,1-三氯乙烷	三氯乙烯	四氯乙烯	二氯甲烷
0.96	1.00	0.57	0.18	1.64

5. 热安定性

了解新溶剂的热安定性与热分解生成物,对于使用时的安全性很重要,尤其需要知道在何种温度下分解、其分解物是否具有危险性,特别是毒性方面。 热安定性的试验有以下两种方法:在columbia scientific, 热安定试验是采用 accelerating rate calorimetry (arc) method,此种方法是检测放热以决定开始分解温度。npb调配剂(添加安定剂)在226.5 开始发热,npb(无安定剂)在395 以下未发现任何放热,然而冷却后钢瓶内的压力比npb(添加安定剂)高,从压力的数据显示,npb(无安定剂)的热分解是从226.5 开始,但是arc无法检测到底是吸热还是放热.在npb调配剂(添加安定剂)方面,其分解伴随放热是与一种以上的安定剂反应。采集上述实验不锈钢瓶中生成的分解物,以分析仪(gc/ms)分析发现,有无添加安定剂npb的分解物几乎没有差异,只是分解物的比例不同.其中并没有检测出游离溴或氢溴酸,虽然确定有溴化甲烷.苯,但是没有大量的高毒性物,也不像氯化溶剂会产生光气之类的非常高毒性化合物。第二种观察热安定性的试验,是假定在蒸汽脱脂中热源引起的现象.在250ml烧瓶中加入npb调配剂,浸入铬线圈,通电使线圈赤热至溶剂沸腾,并采集其蒸发份.蒸发份采取后,以gc/ms分析,发现分解物中有部分含氧物质。

根据以上两种实验检测出的分解物如下所示.

arc法 镍铬合金浸渍法 丙烷 丙烷 异丁烷 溴代甲烷 正烷 溴代乙烷 溴代甲烷 苯 甲苯 2-甲基丁烷 戊烷 氯化丙烷 溴代乙烷 二丙酯 有支键c6h14异构物 1,3,5-三氧化环庚烷 溴代异丙烷 4-溴代-2-丁醇 己烷 苯 c7h16 根据此一热安定性试验的结果,以npb为基料的新溶剂即使有意外的热点(hotspot),除了上述分解物之外,不会产生任何的危险物与有害物。

6.氢溴酸引起的腐蚀

由于npb水解会生成氢溴酸(hbr),而氯化溶剂水解会产生盐酸(hcl),因此有必要了解这两种酸的腐蚀性碳钢(cs)与不锈钢(ss)於两种浓度(饱和.经过稀释)与温度(25、53)条件下.进行静止状态的腐蚀试验,实验结果确认氢溴酸(hbr)在四种条件中的腐蚀性是最低的.

温度,	材质	37%hcl	48%hbr	0.1n hcl	0.1n hbr
25	1010cs	5650	368	83	40
25	316ss	2150	3	0.05	0.03
53	1010cs			417	63
53	316ss			无	无

7. 水解

npb与1,1,1-三氯乙烷的水解安定性,以下述三种条件试验做比较.1.

100ml的溶剂与25ml的稀释水回流164小时. 2. 将316ss部分浸渍於1.中 3.

将10g的颗粒状木炭加入2.中,於索式浓缩器(soxhlet

condenser)中回流浓缩.此虽为蒸汽脱脂的设备,但可利用对炭素的吸脱作用,作为排放的控制。 经此试验后,分析水层与溶剂层,结果如下所示.npb调制品的水解比1,1,1-三氯乙烷高出2-3倍,而在前述的腐蚀试验中,稀释hcl对碳钢的腐蚀性比稀释hbr大约高出2-7倍。此外,高浓度hcl比高浓度hbr的腐蚀性,对碳钢高出15倍,对不锈钢316高出700倍。 表6 npb与1,1,1-三氯乙烷的水解性比较

	a	b	С	d	е	f
npb , ml	100		100		100	
1,1,1-三氯乙烷 ml		100		100		100
不锈钢316	无	无	有	有	有	有
碳钢	无	无	无	无	无	无
水部						
颜色	无	无	蓝绿色	蓝绿色	蓝绿色	蓝绿色

酸度,相当hcl重量%	3.33	1.39	2.13	1.43	3.89	1.50
卤化物 相当hcl重量%	3 03	1 05	2.47	1 10	3 96	1 27

^{8.} 产品组成物的安定性 npb可适用于蒸氧脱酯,因此在其经连续的蒸留、冷凝、回收程序中,直接加热70 蒸留22小时,并以气相分析仪gc分析蒸留前后产品之组成。由表7可知npb及安定剂在连续的蒸留作业中均可保持相当的安定性,而此结果也与由saybolt laboratories相同测试之其沸点仅增高1 的结果一致.

表7npb调配剂组成物的安定性

	npb	安定剂a	安定剂b	安定剂c	其他
实验前	94.58	4.17	0.58	0.39	0.27
蒸留瓶	94.87	3.95	0.53	0.37	0.28
回收品	94.10	4.53	0.68	0.43	0.25

9 、金属及铁桶内衬的相容性

npb与金属以及铁桶内视的相容性,是根据美国军规格mil-t-81533a4.4.9.进行试验。此种试验原本是评估军事用途1,1,1-三氯乙烷的适用性,以确认对金属的腐蚀性。下列金属,经过此种试验没有问题。 - 镍 - 英高镍(inconel)-镁-钛-黄铜-铜-锌-蒙耐合金(monel)-碳钢1010-铝-不锈钢316l 铝的表面会立刻与1,1,1-三氯乙烷反应,但npb的反应性较低,当铝的表面有刮伤时,1,1,1-三氯乙烷会立即变为蓝色,而npb即使经过几个小时也不会变色,因此npb可以放心使用于铝金属。 在腐蚀试验方面,对于碳钢1010、不锈钢316、环氧酚醛以及酚醛烤漆内衬进行54 x2个月的浸渍试验,结果这些材料均适合作为npb溶剂的长期保存容器,同时也适用于氟化物。

10、塑料与弹性体的相容性

塑料与弹性体的相容性,下列素材在npb沸腾溶剂中浸渍15分钟,确认结果良好。

	塑料		弹性体
acculam tm 环氧玻璃		adiprene tm pu	
alathon tm hdpe		aflas tm ptfe	
delrin tm 聚缩醛		buna-n tm橡塑	

kynar tm

kalrez tm 氟素弹性体

nylon tm (6, 66)

neoprene tm 聚氯丁二烯

酚醛

viton-a氟素弹性体

聚酯

viton-b 氟素弹性体

聚丙烯

teflon tm ptfe

tefzel tm 乙烯/ptef

xlpe tm 架桥pe

11、应用实例

某家制造医疗器具电子零件的公司以往使用cfc113,基于性能、空间与成本等理由,改用新型溶剂系统,最初试验d-柠檬油精(d-lemonene),由于残留物以及生成氧化物的因素,并没有采用。后来试验了以npb为基料的洗净剂,没有d-柠檬油精残留物的问题,而且去除助焊剂(flux)的效果优于cfc113,虽然对于某些塑料有若干变色与脱色的情形,对此,只要缩短接触时间即可解决

溴代正丙烷npb工业清洗剂

主要成份 cas: 106-94-5 英文名字: n-propyl bromide 中文名字: 溴代正丙烷 含量: 99.5%以上 重要危害: 长时间高浓度暴露可能造成对肺、肾、肝有损伤. 主要症状: 刺激感, 麻醉感,头昏, 恶心. 急救措施: 1.吸入: a, 将受害者自暴露处移开 b, 使用适当保护器或呼吸器. 2.皮肤接触: a, 可用大量清水冲洗,并可使用肥皂. b, 冲洗时脱去污染的衣服. 3.眼睛接触: a, 用大量清水冲洗 15分钟以上. b, 如仍觉刺激,则请医生治疗. 4.食入: a, 可盐水灌胃,使其呕吐. b, 保持安静,迅速就医. 灭火措施: 适用灭火剂: 二氧化碳,干粉,泡沫灭火器.

灭火时要注意可能产生的hbr,co,co2等有害气体.灭火步骤: 1,撤离所有人员

- 2,尽快将可燃物与事故现状隔离.3,立即从最近距离进行灭火.
- 4,避免将水直接喷入储存容器内,以免沸溢危险. 泄漏处理方法: 1,隔离火源
- 2.在安全状况许可下,设法阻漏,实施清理. 3.将人员远离泄漏区,并通知负责单位.
- 4,穿戴适当之个人防护设备. 环境注意事项: 1,用沙. 泥土或其他惰性物质来堵泄漏物.
- 2,避免外泄物进入水沟或密闭空间内. 3,必要时通报政府环境保护相关单位. 清理方法: 1,统一收集.
- 2.送合格废物处理厂处理

安全处置与储存方法: 处置:1,在指定之通风良好处2,远离热源,火花,火焰处

- 3,避免操作时产生雾滴,并穿戴适当个人防护设备。存储:1,贮存于阴凉干燥,通风良好处,
- 2,远离火源。3,如有大量囤积则须考虑接地处理。 个人防护设备:

呼吸防护:尽量减少暴露,必要时使用合格呼吸器。手部防护:耐化学品手套眼睛防护:安全护目镜皮肤及身体防护:防渗衣服或防护衣卫生措施:1,工作场所严禁抽烟饮食2,处理此物后须彻底洗手。

物理及化学性质: 状态:无色或淡黄色液体,稍具刺激性气味。 沸点: 71 . 闪点: 无 ph: 6-7

自燃温度: 490 密度: 1.34(25/25) 安全性及反应性:安定性:稳定,一般情况下较安全.

特殊状况下可能危害反应: 无 应避免状况: 避免火源及高温. 应避免物质:

强氧化剂,强酸及强碱,碱金属,碱土金属. 危害分解物:

燃烧后主要产生二氧化碳,水及少量一氧化碳与溴化氢.毒性资料:急毒性:

吸入:高温度蒸气下会刺激呼吸器官而导致头痛、头眩. 眼睛:造成刺激与痛苦,高浓度蒸气可能伤害眼睛组织.

皮肤:轻微刺激性,长时间接触表面有干燥现象