福建省厦门市西门子中国总代理-西门子选型-西门子技术支持-西门子维修服务

产品名称	福建省厦门市西门子中国总代理-西门子选型- 西门子技术支持-西门子维修服务
公司名称	广东湘恒智能科技有限公司
价格	.00/件
规格参数	变频器:西门子代理商 触摸屏:西门子一级代理 伺服电机:西门子一级总代理
公司地址	惠州大亚湾澳头石化大道中480号太东天地花园2 栋二单元9层01号房(仅限办公)(注册地址)
联系电话	18126392341 15267534595

产品详情

在 PLC_1 的OB1中调用接收指令T_RCV 并配置基本参数

为了实现 PLC_1 接收来自 PLC_2 的数据,则在 PLC_1 中调用接收指令T_RCV 并配置基本参数。

创建并定义PLC_1的接收数据区 DB 块。通过 "Project tree " > "PLC_1 " > "Program blocks " > "Add new block ",选择 "Data block "创建 DB 块,选择juedui寻址,点击 "OK "键,定义发送数据区为 100个字节的数组,如图12及图13所示。

图12. 创建接收数据区 DB 块注意:对于双边编程通信的 CPU,如果通信数据区使用 DB 块,既可以将 DB 块定义成符号寻址,也可以定义成juedui寻址。使用指针寻址方式,必须创建juedui寻址的 DB 块。

图13. 定义接收数据区为字节类型的数组

调用"TRCV"在OB1内调用进入"Project tree">"PLC_1">"Program blocks">"OB1" 主程序中,从右侧窗口"Instructions">"Communications">"OPEN User Communications"下调用 "TRCV"指令,配置接口参数,如图14所示。图14.调用 TRCV 指令并配置接口参数

参数说明:输入接口参数:

EN_R

:= TRUE

ID

:=1

// 连接号,使用的是 TCON 的连接参数中 ID号

LEN

: = 100

// 接收数据长度为 100 个字节

DATA

: = P#DB4.DBX0.0 BYTE 100

// 接收数据区的地址

输出接口参数:

NDR

: = M310.0

// 该位为1, 接收任务成功完成

BUSY

: = M310.1

// 该位为1, 代表任务未完成, 不能激活新任务

ERROR

: = M310.2

// 通信过程中有错误发生,该位置1

STATUS

: = MW312

// 有错误发生时, 会显示错误信息号

RCVD_LEN

: = MW314

// 实际接收数据的字节数

注意:LEN设置为 65535 可以接收变长数据。

在 PLC_2 中调用并配置 " TCON " 、 " TSEND " 、 " TRCV " 通信指令1. 在 PLC_2 的 OB1 中调用 " TCON " 通信指令

在第一个 CPU 中调用发送通信指令,进入 "Project tree "> "PLC_2 "> "Program blocks "> "OB1 "主程序中,从右侧窗口 "Instructions "> "Communications "> "OPEN User Communications "下调用 "TCON "指令,创建连接,如图15所示。图15.调用"TCON"通信指令

创建DB2 分配连接参数,见图16所示

图16. 创建连接数据块 DB2(Con_DB)

定义 PLC_2的 连接参数 " TCON " PLC_1 的 TCON 指令的连接参数需要在指令下方的属性窗口 " Properties " > " Configuration " > " Connection parameter " 中设置,如图17所示。 图17. 定义 TCON 连接参数 连接参数说明:

End point:可以通过点击选择按钮选择伙伴 CPU : PLC_2Connection type:选择通信协议为 TCP(也可以选择 ISO on TCP 或UDP协议)Connection ID :连接的地址 ID 号,这个 ID 号在后面的编程里会用到Connection data

: 创建连接时, 生成的Con_DB块。见图2所示

Active connection setup:选择通信伙伴 PLC_1作为主动连接Address details :定义通信伙伴方的端口号为:2000;如果选用的是 ISO on TCP 协议,则需要设定的TSAP 地址(ASCII 形式),本地 PLC_2可以设置成"PLC2",伙伴方 PLC_1 可以设置成"PLC1"。2.在 PLC_2 中在OB1调用"TRCV"通信指令

接收从PLC_1发送到PLC_2的100个字节数据

创建并定义接收数据区 DB 块。通过 "Project tree " > "PLC_2 " > "Program blocks " > "Add new block ",选择 "Data block "创建 DB 块,选择符号寻址,点击 "OK "键,定义接收数据区为 100 个字节的数组,图18及图19所示。图18. 创建接收数据区 DB 块图19. 定义接收区为 100 个字节的数组 定义调用 "TRCV"程序

图20. TRCV 块参数配置参数配置:输入接口参数:

EN_R

: = TRUE

// 准备好接收数据

ID

:=1

// 建立连接并一直保持连接

LEN

: = 100

// 接收的数据长度为 100 个字节

DATA

: = P#DB4.DBX0.0 BYTE 100

//接收数据区,DB块选用的是符号寻址

输出接口参数:

DONE

```
: = M310.0
```

//任务执行完成并且没有错误,该位置1

BUSY

: = M310.1

// 该位为1, 代表任务未完成, 不能激活新任务

ERROR

: = M310.2

// 通信过程中有错误发生,该位置1

STATUS

```
: = MW312
```

// 有错误发生时, 会显示错误信息号

RCVD_LEN

: = MW314

// 实际接收数据的字节数

3. 在 PLC_2 中调用并配置 "TSEND " 通信指令

PLC_2 将 发送100个字节数据 到 PLC_1 中,如何创建发送数据块DB3,与创建接收数据块方法相同,不再详述。在 PLC_2 中调用发送指令并配置块参数,发送指令与接收指令使用同一个连接,如图21所示。

图21. 调用TSEND 指令并配置块接口参数参数说明:输入接口参数:

REQ

: = M0.3

// 使用 2Hz 的时钟脉冲,上升沿激活发送任务

ID

:=1

// 连接ID号,通过TCON创建的连接

LEN

```
:=100
```

// 发送数据长度为 100 个字节

DATA

: = P#DB3.DBX0.0 BYTE 100

// 发送数据区的符号地址

输出接口参数:

DONE

: M300.0

// 任务执行完成并且没有错误, 该位置1

BUSY

: M300.1

// 该位为1, 代表任务未完成, 不能激活新任务

ERROR

: M300.2

// 通信过程中有错误发生,该位置1

STATUS

: MW302

//有错误发生时,会显示错误信息号

下载硬件组态及程序并监控通信结果

下载两个 CPU 中的所有硬件组态及程序,从监控表中可以看到,PLC_1的 TSEND 指令发送数据: "66", "55", "44"数据,PLC_2 接收到数据: "66", "55", "44"。而 PLC_2 发送数据 "11", "22", "33",PLC_1接收数据是 "11", "22", "33"",如图22所示。

图22. PLC_1 及 PLC_2 的监控表