韩国火箭ROCKET蓄电池L-890 8V190AH气体再化合技术

产品名称	韩国火箭ROCKET蓄电池L-890 8V190AH气体再化合技术
公司名称	狮克电源(山东)有限公司
价格	580.00/只
规格参数	品牌:火箭ROCKET 型号:L-890 产地:韩国
公司地址	北京市昌平区沙顺路88号
联系电话	13240167779 13240167779

产品详情

韩国火箭ROCKET蓄电池L-890 8V190AH气体再化合技术

检查项目包括:整组电池的浮充电压,单体电池浮充电压,测单体电池电压时,应在电池放电状态下进行,否则测得的结果会是假电压,经验作法是在测量时,万用表两端并联一个1-3欧姆的电阻丝;检查电池是否损坏,壳、盖间有无泄漏,表面是否有灰尘等杂物,电池架、连接线、端子是否有松动或锈蚀等

超量电解液空间设计 极板上部超大空间设计:比常规电池高出10mm以上。在高温下,电解液蒸发时间延长1/3,有效延长免维护电池的使用寿命。

Super electrolyte space design: The upper part of the electrode plate has a super large space design, which is more than 10mm higher than conventional batteries. At high temperatures, the evaporation time of the electrolyte is extended by one-third, effectively extending the service life of maintenance free batteries.

Cold forging pole technology makes the surface of the pole hard and crack free. Effectively prevent pole climbing acid.

Special pole protection cream technology: prevents pole oxidation, making the pole smoother and harder.		
The positive electrode grid adopts a special coating material formula, effectively increasing its resistance to low temperature and high heat, and extending its service life.		
High purity materials, special process grid: high-purity lead, high-quality calcium, aluminum alloy, area dense tensile grid, effectively enhancing grid strength, corrosion resistance, overcharging resistance, reducing self discharge, and high temperature resistance.		