稳定电源性能好 1756-OB32 CPU模块

产品名称	稳定电源性能好 1756-OB32 CPU模块	
公司名称	厦门盈亦自动化科技有限公司	
价格	800.00/件	
规格参数	品牌:A-B 型号:1756-OB32 产地:美国	
公司地址	厦门市集美区宁海三里10号1506室	
联系电话	0592-6372630 18030129916	

产品详情

稳定电源性能好 1756-OB32 CPU模块

1756-A10	1756-IF16	1794-IM16	1756-HSC
1756-A13	1756-IF16H	1794-IM8	1756-IA16
1756-A17	1756-IF8	1794-IR8	1756-IA16I
1756-A4	1756-IF8H	1794-IRT8	1756-IA32
1756-A7	1756-IF8I	1794-IT8	1756-IB16
1756-BA1	1756-IF6I	1794-IV16	1756-IB16D
1756-BA2	1756-IF6CIS	1794-IV32	1756-IB16I
1756-BATA	1756-IT6I	1794-OA16	1756-IB32
1756-CN2	1756-IR6I	1756-M03SE	1756-BATA
1756-CN2R	1756-IR12	1756-M08SE	1756-CNB
1756-CNB	1756-IRT8I	1756-M16SE	1756-IC16
1756-CNBR	1756-IT6I2	1756-N2	1756-IB16

1756-DHRIO	1756-IM16	1756-OA16	1756-IB32
1756-DNB	1756-L61	1756-OA16I	1756-IF16
1756-EN2T	1756-L62	1756-OB16D	1756-IR61
1756-EN2TR	1756-L63	1756-OB16E	1734-ACNR
1756-EN3TR	1756-L64	1756-OB16I	1734-ADN
1756-ENBT	1756-L65	1756-OB32	1734-AENT
1756-ENET	1756-L71	1756-OF4	1734-AENTR
1756-EWEB	1756-L71S	1756-OF8	1734-APB
1756-TBS6H	1756-PA75R	1756-OF8I	1746-IA16
1756-TBSH	1756-PB72	1756-OW16I	1746-IB16
1757-SRM	1756-PB75	1756-PA72	1746-IB32
1746-N2	1756-RM	1756-PA75	1746-IM16
1746-NI16I	1756-IB16	1794-OA8	1746-IO12DC
1746-NI4	1746-IV32	1794-OA8I	1746-ITB16

稳定电源性能好 1756-OB32 CPU模块

随着机械加工零件复杂程度、精度要求的不断tigao,加工材料种类不断变化,各种合金材料应用也越来越普及,使得加工设备越来越复杂和精密,对加工的质量要求越来越高。企业在生产制造某些零件的过程中,有时会遇到"零件表面质量差,刀具磨损严重"等问题,但是又不能快速找到原因,从NC程序运行来看,也无法准确判断。

海克斯康工业软件

NCSIMUL的"切削分析"功能,可以在短时间内快速分析加工过程的关键参数,如:切削深度,切削宽度,切削厚度,切削liuliang及切削力等。加工过程中经常出现"零件表面质量差,刀具磨损严重"问题,可以通过分析切削深度,切削宽度,切削厚度,切削liuliang及切削力的变化,快速锁定出现问题的位置,为程序改进提供了必要条件。

下面我们通过一个例子来展示一下如何用NCSIMUL切削分析的应用过程,帮助您高效快速的找到并解决加工质量不高的问题呢。各位感兴趣的粉丝可以打开NCSIMUL跟着操作。

点击"切削分析"按钮,进入切削分析菜单。
点击"设置",弹出设置对话框,设置分析参数。
设置切削计算参数
选择需要分析的程序
选择需要分析的刀具
选择毛坯材料及机床空载功率
点击"计算"按钮,完成计算。
五 五
查看计算结果。
切深突然变大造成刀具受力增大
六
改进程序并再次分析,终输出没有问题的程序。
从上图可以很直观的看出来,通过NCSIMULD切削分析的应用过程改进后的程序,受力相对平稳,AP值 变化不大,这样就能tigao产品的加工质量及刀具寿命,通过这个方法能快速准确的找到问题点并能将问 题解决。
稳定电源性能好 1756-OB32 CPU模块

首先确保仿真过程中没有错误(没有超程,无子程序缺失,无碰撞,无过切等)。